SPI 会員限定FreeWebinar: 見逃せない今月の重要ニュース 独自チップ採用で急成長するAppleのMac

www.semiconportal.com

2022年5月25日 Kenji Tsuda Editor-in-Chief www.semiconportal.com

www.semiconportal.con

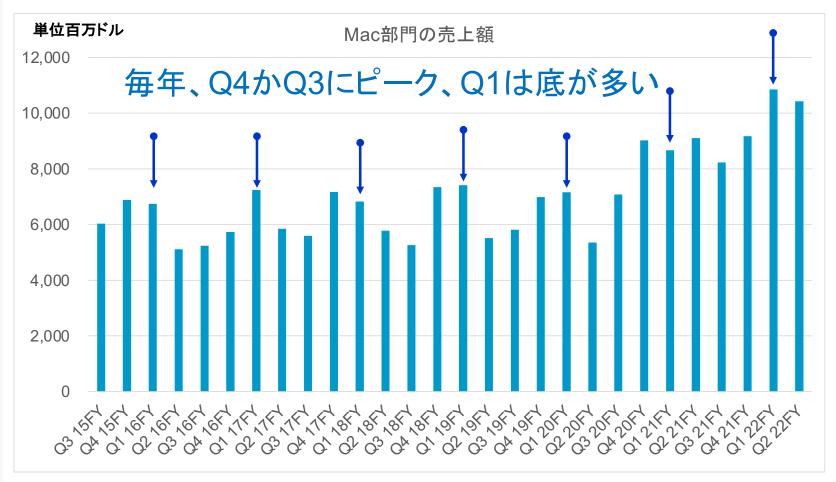
Apple 各部門別売上額

最近の四半期業績

単位は百万ドル

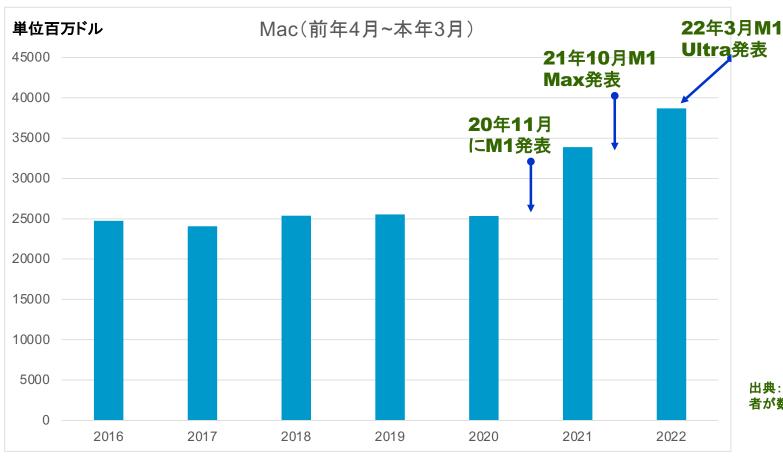
最近の6カ月業績

単位は百万ドル


	22年Q1	21年Q1	成長率%		22年H	21年H	成長率%
iPhone	50,570	47,938	5.5	iPhone	122,198	113,535	7.6
Mac	10,435	9,102	14.6	Mac	21,287	17,777	19.7
iPad	7,646	7,807	-2.1	iPad	14,894	16,242	-8.3
Wearables,others	8,806	7,836	12.4	Wearables,others	23,507	20,807	13.0
Services	19,821	16,901	17.3	Services	39,337	32,662	20.4

22年Q1は、2022年1~3月期、以下同様

www.semiconportal.com


Mac売上額の四半期ごとの推移

出典:Appleの決算報告書からグラフ化

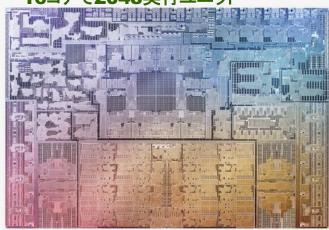
Macに独自ICを採用してから成長した

出典:Appleの決算報告書から筆者が数字をまとめた

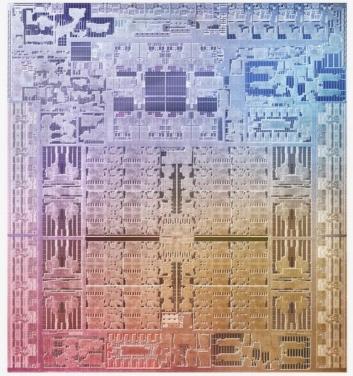
Apple、Macパソコンに独自CPUを採用

- 1994~96年、Motorola 68シリーズからPowerPCへ移行
- 2005~2007年、PowerPCチップからIntelチップへの移行
- 2020年11月、IntelからApple Silicon(当初の呼び方)へ移行
- 第1弾、M1プロセッサチップセット; CPU+GPU(別)
- 2021年10月; M1 MaxとM1 Proを発表、1チップCPU+GPU
- 2022年3月; M1 Ultraを発表、M1 Maxを2チップ接続、シリコンインターポーザ採用

M1シリーズの設計思想はGデザイナー向け


- ●CPUはPro/Maxとも高性能8コア+低消費電力2コアで性能と電力の最適化をPMICで図る
- ●ビデオコーデック(H.264/265)、AI-MLエンジン(16 コアで11TOPS)も搭載

M1のGPUは別チップ


≰M1 _{7nm}

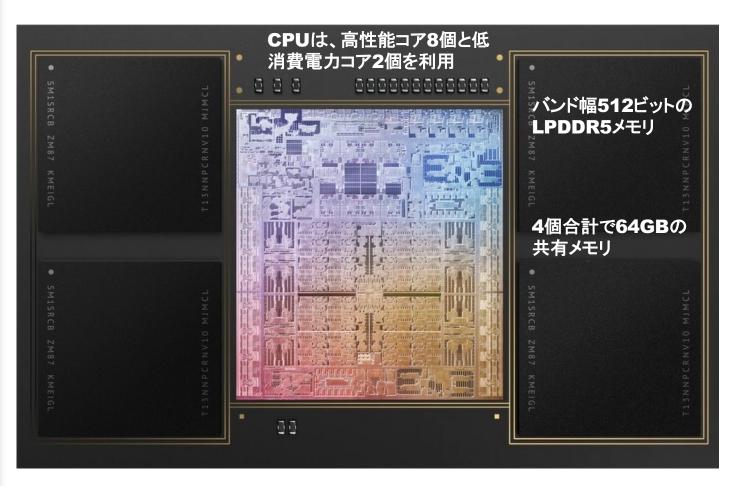
ProにはGPU16コアを1チップに集積 16コアで2048実行ユニット

€M1 Pro 5nm

Maxは、GPU32コアを集積

★M1 Max

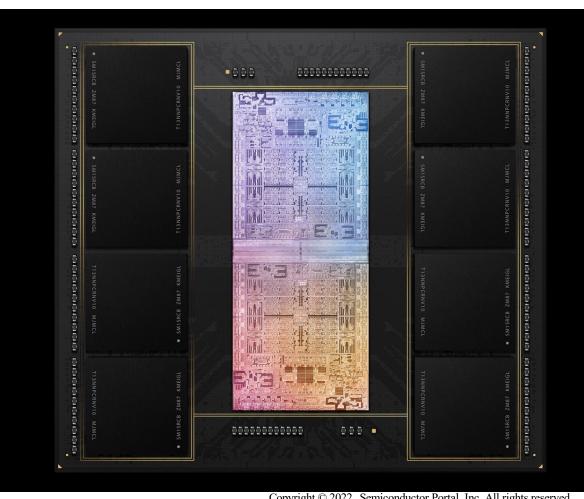
5_{nm}


semiconportal

なぜ独自チップか

- チップユーザーの要望を取り込めるーーGデザイナー用途
- ユーザー;グラフィックスやビデオをサクサク
- 消費電力あたりの性能を上げられる⇒ エネ効率向上
- Armのコアはメモリと近づけられる⇒ 高速になる
- CPUとGPUのメモリを共有できる⇒ 高速になる
- HBMメモリも近くに寄せられる⇒ 高速になる
- 1パッケージに集積することで性能/Wを向上⇒ エネ効率向上

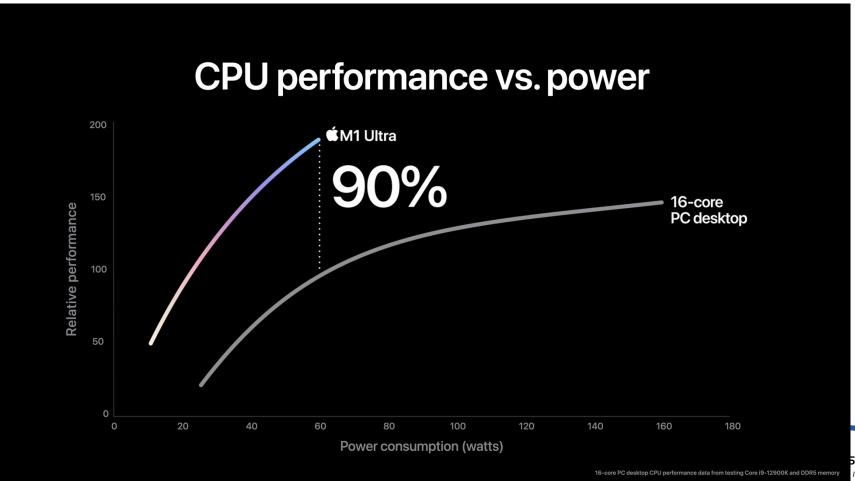
M1 Max: 4個のHBMでメモリ共有


GPUコアを倍増 してグラフィック 性能を向上

M1チップサイズはレチ クルギリギリの模様

570億トランジスタ

M1 Ultra; SiインターポーザでM1 Maxを接続


Copyright © 2022 Semiconductor Portal, Inc. All rights reserved.

M1設計思想:拡張性 チップを順次、接続して、 性能を拡張する

M1チップサイズはレチクル以上 の面積になりパッケージで対応

M1 Ultra、性能/Wが圧倒的に優れている

技術: GPU、PMICで性能・消費電力を改善

- GPUはImagination Technologies から、PMICはDialogから エンジニアを含めて買収
- 当初は、自力でGPUもPMICも開発しようとしたが、断念
- CPUはArmのコアを自主的に改良; Intrinsityを買収してCPU 回路を高速化
- CPUとGPUのメモリを共有、GPUからメモリを直接アクセス
- 5nmプロセスはTSMCに依頼

ありがとうございました

Q&A

