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Spatial dose non-uniformity is a key variation of 

concern in ion implantation. As the ion beam shape and 

intensity changes as the beam is swept across the wafer 

(Fig. 1) [1], non-uniform implantation arises when the 

beam is swept at a constant speed (Fig. 2). Effectively 

and efficiently compensating for these variations can 

reduce tool downtime, improve uniformity, and 

expand the range of feasible recipes. 

Here, we present a Bayesian machine learning [2] 

method for rapidly tuning ion implant processes to 

compensate for these variations. Our approach adjusts 

the beam time spent at each point on the wafer, 𝑇, in 

order to achieve a desired implant dose profile, 𝐼. This 

approach is comprised of two components: a model 

that estimates the relationship between 𝐼 and 𝑇, and 

an optimization component that uses this belief to 

solve for a set of beam times that minimizes non-

uniformity. When tuning a process, we alternate 

between selecting new implant times using the current 

belief, then updating the belief with the observed 

results, until the beam times give sufficient uniformity. 

We assume that the relationship between T and I 
is linear: scaling the implant time results in a scaled 

implant profile. The dose profile 𝐼 is thus a product 

of the beam times, 𝑇, spent above each point on the 

wafer and the beam shapes, 𝐵: 

𝐼 = 𝐵𝑇. 
The task of modeling the relationship between 𝐼 

and T is thus equivalent to estimating B (Fig. 3). We 

use a method similar to Kalman filters [3] to estimate 

the unknown variable B. We model B as a multivariate 

Gaussian random variable expressing our belief in the 

possible model parameters, and update this belief as 

new observation pairs, 𝐼, 𝑇 are made: 

𝑃(𝐵|𝐼, 𝑇) ∝ 𝑃(𝐼|𝐵, 𝑇)𝑃(𝐵). 
We then use this belief in order to select a new set 

of beam times that seek to achieve our desired profile, 

𝐼𝑑 . We frame this as a constrained optimization 

problem: 

min ∑(𝐵𝑇 − 𝐼𝑑)2 + 𝜆∑(𝑇𝑖−1 − 2𝑇𝑖 + 𝑇𝑖+1)2 

𝑠. 𝑡.  𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥  ∀𝑖 ∈ 1: |𝑇| 
This cost function minimizes the mean squared 

error between the predicted and desired dose profile, 

with an additional penalty related to the spatial 

smoothness of 𝑇 . This smoothness term prevents 

overfitting to our current belief, and gives solutions 

which are less susceptible to run to run variations. 

Finally, 𝑇𝑚𝑖𝑛 and  𝑇𝑚𝑎𝑥   constraints ensure that the 

solution meets the physical constraints of the tool. 

We compare our proposed method to the existing 

industry method of record for recipe tuning. We 

consider edge-case conditions of very wide, very low 

energy beams where typical industry methods have 

difficulty achieving high degrees of uniformity. We 

alternate tuning using our proposed method and the 

existing method of record, and report results below.  

A key metric of interest is the number of tunes 

required in order to achieve a desired non-uniformity 

(NU, expressed as dose standard deviation divided by 

dose mean). Reducing this metric reduces tool 

downtime required for re-tuning. We record the 

number of iterations required to converge to 0.5% NU. 

On average, our proposed method converges in 2.2 

iterations, while the existing industry method of record 

converges in 4.3 iterations. We present histograms 

showing the number of required iterations for both 

methods in Fig. 4, and show an example tune for our 

proposed method in Fig. 5. 

In addition to tuning in fewer iterations, our 

proposed method also enabled a significantly higher 

implant current, given the same uniformity and total 

implant time constraints for this recipe (Fig. 6). 

Practically, this is enormously beneficial, as it allows 

the same implantation recipe to be performed in less 

time, increasing the subsequent per-implant tool 

throughput by a similar amount.  

A further benefit of our proposed method is its 

high tuning success rate. For recipes with extreme 

variations, the existing industry method of record may 

fail to converge to the desired non-uniformity. In 

testing, the method of record failed in 2 out of 27 cases 

(such failures require a lengthy tool reset), while our 

proposed method converged in 100% of cases, thus 

substantially reducing tool downtime and extending 

process recipe range in addition to reducing tuning 

time. 
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Fig. 1: Experimentally measured implant rate cross sections 

when the beam is placed at three different wafer locations. 

Note the change in intensity as the beam location changes. 

 

Fig. 2: Cross section of implant dose profile (normalized) 

when sweeping the beam at a constant speed. 

 

Fig. 3: Inferred beam matrix, 𝐵, (normalized), that shows 

the implant rates as a function of the beam placement, and 

wafer position. 

 

 

Fig. 4: Histogram of number of iterations required to achieve 

0.5% non-uniformity in proposed method (top) and existing 

industry method of record (bottom). 

 

Figure 5: Implant dose (left) and corresponding beam times 

(right) for an example tuning run. 

 

Figure 6: Histogram of mean implant current for proposed 

and existing industry solutions. 


