

New Release

LTEC Corporation

Your most experienced partner in IP protection

1200V SiC MOSFET (Infineon ,Wolfspeed,Rohm) 技術の現状とベンチマークについてのレポート

エルテックではInfineon、Wolfspeed、Rohmの最新世代の1200V SiC MOSFETを比較検証し、高温で信頼性の高い動作を実現するための技術の特定や、構造解析結果パラメーターや電気特性評価結果から性能指数を評価し、さらにチップコストやウェハーコスト等のコスト分析などを含めたベンチマークレポートをリリースしました。

<u>概要</u>

SiCパワートランジスタのデータシートには以下のデータが不足しており、本レポートは物理的解析と電気的特性との相関を使用して、これらの一部を補足したものである。

- 1. オフ・ドレイン漏れ電流電圧と温度依存性
- 2. しきい値電圧DIBL (Drain Induced Barrier Lowering)、ドレイン電圧依存性
- 3. 短絡(ショートサーキット、、SC)耐量
- 4. 短パルス時間の熱インピーダンス(1us~100us)

レポート調査内容

※次頁目次参照

主な解析、調査結果

- SiC MOSFETは、リファレンスに使用したSi-IGBTに対して、スイッチングエネルギーにおいて約1/20を実現。これは、高いスイッチング周波数の可能性を示唆。
- シミュレーションされた最大スイッチング周波数は、Si-IGBTの場合は16kHz、
- SiC MOSFETの場合は200-400kHzとなる。
- •C社のMOSFETは、高いしきい値Vthにもかかわらず、高温では最も低いRONxA (644 $m\Omega \cdot mm^2$)を実現する。(A社は1168 $m\Omega \cdot mm^2$ と2倍近い)。
- ・単位面積当たりのオン抵抗(RONxA)のトレンドは、~0.7x/3年の削減率を継続すると予測する。
- ・ROHM、WOLFSPEED、INFINEONの場合、ウエハーコストは、ウエハー当たり\$・・・~・・・である。
- ・平均販売価格(ASP)について、大量生産下においては、1200V SiC MOSFETの価格/アンペアは\$・・・~・・・/Aである。※Si-IGBTは約\$・・・/Aと推定

レポート販売価格(税別)¥500,000

Table of Contents

目汐	7		ページ
1	1.1	エグゼクティブサマリー	2
	1.2	はじめに:背景,目的 & 範囲	5
2		SiCトランジスタの展望	6
	2.1	Si、GaNとSiCパワートランジスタの競合関係	6
	2.2	パワーエレクトロニクスデバイス用の半導体材料の関連する特性	7
	2.3	パワー電子デバイスにおける高温考察	8
	2.4	SiCおよびGaNパワートランジスタの現状と展望	9
	2.5	Table4:SiCデバイスおよびモジュールメーカーの現状 (2018年4月時点)★	10
3		SiC MOSFETの技術動向と進化	11-16
4		SiC MOSFETの製造コストと価格について	17-25
5		SiC MOSFETのベンチマーク	26
	5.1	SiC MOSFETの信頼性に対する懸念	27
	5.2	Table6: 1200V Si-IGBT vs. SiCトランジスタベンチマーク	28
	5.3	Table7: 評価された1200 V SiC MOSFETの構造	30
	5.4	評価された性能指数FOM	31-34
	5.5	SiC MOSFETのベンチマーク結果	35-37
	5.5.1	比較結果:パフォーマンス&FOM	38-40
	5.5.2	電気特性評価	41
		Analysis and comparison of main electrical and structural characteristics	
		・Electrical characteristics (data sheet + measured value)	40
		真性の電気特性の比較	42
		Id-Vds	43
		RON成分解析	45-48
		オフ状態のドレイン電流温度依存性とブレークダウン電圧	49-53
	5.5.3	短絡耐量と熱インピーダンス解析	54-69
6		まとめと結論 	70
7		参考文献	71-72
8		Appendix	73-77

