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Plasma-assisted process is essential for nanoscale 

patterning of semiconductor and controlled with 
process variables. The mechanisms of particle 
generation, transportation and surface reaction 
enhance the non-linearity of plasma parameters and 
conceal the analytical causality of process result. The 
unclear causality serves as obstacle for detection of 
process perturbation and yield improvement.  
In this work, modified autoencoder was developed 

for diagnosing the root causes of perturbation in a 
plasma process. Optical emission spectroscopy (OES) 
signals of size 11220x3648 were collected for training 
the autoencoder while varying four process conditions, 
such as RF power, pressure, Ar gas flow rate and CF4 
gas flow rate. The collected signals were normalized 
by dividing each signal vector's length and then fed 
into the autoencoder as input.  
The encoder layers of the autoencoder consisted of 

two fully connected layers of size 3648x3648 and a 
fully connected layer of size 3648x4. The selectivity 
between the extracted features was improved by 
removing connections besides specific encoded 
features while the autoencoder is trained. The outputs 
of each layer passed hyperbolic tangent function as 
activation function for giving the non-linearity and 
batch normalization layer for solid training without 
gradient diminishing. Each layer can be expressed in 
below equation, where the xt means input vector of tth 
layer, W the parameter matrix, b the bias vector, μ, σ , 
γ, and β means the parameters for batch normalization. 
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The loss function for training was consisted with 

reconstruction loss and selectivity loss. The 
reconstruction loss optimized the parameters to 
express the original data while extract the features well 
and selectivity loss was added to make the features 
react to only specific error while training. The loss 
function can be expressed as below, when the x means 
the input signals, x̂ reconstructed signals, z encoded 
features for x and the I means one-hot vector. 

 
Constructed loss function optimized the parameters 

of modified autoencoder with backpropagation 

algorithm using adaptive moment estimation (ADAM) 
optimizer and learning rate was controlled with 
ReduceLROnPlateau algorithm. The train loss and 
validation loss was saturated to 0.01 and 0.06 just in 
500 epoch. 
As the validation step, OES signals of the size 

2133x3648 were collected from standard processes 
and perturbated processes. The collected signals for 
test were inputted into the trained encoder layers to 
extract features. The perturbation of process and roots 
for each process perturbation were diagnosed with 
extracted feature scores. One of the extracted features, 
Z1 just reacted just for OES signals of power 
perturbated processes and detected the power 
perturbation. And the others also reacted to just 
specific features and detected the perturbation of 
pressure, Ar flow rate and CF4 flow rate perfectly. 
The relevance score means the contribution of each 

input for model to decide score. The relevance scores 
of each layer in this autoencoder model were expressed 
with summation of partial differentiation to input like 
below and were calculated to each wavelength. The 
relevance score of Ar line 589.35nm had the highest 
contribution to decision of Ar flow rate perturbation 
and pressure perturbation with 1.3% and 1.5% ratio to 
overall score. The relevance score of Ar line 750.45nm 
had the highest contribution to decision of CF4 flow 
rate perturbation and power perturbation with 0.7% 
ratio to overall score. 
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Figure 1. Perturbation detection algorithm scheme 

 
Figure 2. Z features encoded from standard processes 
and RF power perturbated processes 

 
Figure 3. Z features encoded from standard processes 
and pressure perturbated processes 

 
Figure 4. Z features encoded from standard processes 
and Ar gas flow rate perturbated processes 

 
Figure 5. Z features encoded from standard processes 
and CF4 perturbated processes 

 


