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Ⅰ. INTRODUCTION 

In semiconductor manufacturing factories, many engineers are actively 

engaged in productivity improvement, quality maintenance, and yield 

improvement activities by building statistics and machine learning models 

using big data accumulated daily. Especially in Wafer process, we have 

focused on using equipment information to predict product quality. [1]. On the 

other hand, in assembly processes of image sensors, there are many types of 

package sizes and structures depending on the application, making it difficult 

to set up the equipment and causing the defect rate to vary. Furthermore, it is 

difficult to construct a prediction model because the structure of the data is not 

standardized, and qualitative and quantitative data are mixed. 

Therefore, we report on our efforts to construct the defect rate prediction 

model using assembly process equipment information and product 

information for products with different package sizes and structures. 

Ⅱ. DATA-COLLECTION 

We selected two assembly processes that have a high impact on product 

yield. We interviewed engineers in selected processes and chose product 

information and equipment setting parameters that could affect the occurrence 

of defects (Fig.1.). Most of the selected equipment setting parameters were 

structured data already registered in the database, whereas the product 

information included a lot of unstructured data such as drawings. Therefore, 

we collected the data manually. 

The collected data has four issues. So, we revised them in turn (Fig.2.). 

First, we unified the character data and the unit of measure that differs from 

one equipment to another. Next, we selected the optimal statistics that 

represented the working characteristics of the equipment settings. After 

visualizing and analyzing the data, we created new explanatory variables from 

the collected data, then we added them to the data set. If the processing flow 

differs depending on the materials used, we standardized the corresponding 

tasks and left the different tasks blank. 

Ⅲ. METHODS 

The data set in this study contains quantitative variables, qualitative 

variables, and blank data. In general, statistical models require a lot of 

preprocessing for highly accurate prediction, whereas machine learning is 

difficult to show the basis for decisions, which makes it difficult to improve 

quality. For these reasons, we used AI predictive analysis tool “Prediction 

One” (Sony Network Communications Inc., Tokyo, Japan; 

https://predictionone.sony.biz/). The tool does not require preprocessing of 

missing value and qualitative variable data, which can reduce prediction 

accuracy and automatically optimizes the model's layer structure and 

hyperparameters. It also has the function that ranks the explanatory variables 

that were considered important in the model construction on a scale called 

“importance”. 

The basic structure of prediction model is an ensemble model of gradient 

boosting (GBDT) and neural networks (NN) (Fig.3.). Where 𝛼 is the weight 

of the model, the predictive model can be expressed by the following equation: 

 

   𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =  𝛼 ∙ 𝐺𝐵𝐷𝑇 + (1 − 𝛼) ∙ 𝑁𝑁   (1) 

 

We constructed models to predict the defect rate of process Die Bond (DB) 

and Wire Bond (WB). The DB is a process to bond chips to packages or 

supports. The WB is the process of connecting electrodes on a chip to 

electrodes on a package or substrate using metal wires. The objective variable 

is the defect rate, and the explanatory variables are equipment setting 

parameters and product information. Table.1 and 2 show details. 

Ⅳ. RESULTS AND DISCUSSION 

Fig.4. shows we predicted of DB defects (coefficient of 

determination:0.87). The top importance items showed some items related 

to package size. This is consistent with the engineer's knowledge that package 

size affects the amount of package warpage and induces defects during chip 

fixturing. We consider the addition of explanatory variables related to package 

warpage to further improve accuracy. 

In the same way, the predicted results of WB defects (coefficient of 

determination:0.81). Focusing on the top items of importance, we can see 

parameters related to the length and number of wires. These parameters were 

consistent with the engineer's knowledge that the number and arrangement of 

WB to be joined increased the defect rate. 

We also built models for other processes in the same way and attempted to 

predict yield by combining all models. Fig.5. shows a comparison of the 

prediction results between proposed method and existing model. The model 

combined with this method is more accurate than the existing method. 

(Existing model’s coefficient of determination:0.19/proposed models’ 

coefficient of determination:0.64). 

Ⅴ. CONCLUSIONS 

We appropriately processed the data with the engineer's knowledge when 

creating the data set, and selected variables when building the model. As a 

result, we were able to construct a model that allows us to easily examine the 

results and predict defect rates for products with different package sizes and 

structures. 

In the future, we will use models to determine the optimal package structure 

and equipment conditions. Furthermore, we will take on the challenge of 

developing technology and building an environment that will enable us to 

make consistent yield prediction between wafer process and assembly 

processes. 
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Fig.1. Assembly process flow and example of WB variable selection 

 

Fig.2. Preprocessing 

 

Fig.3. Diagram of gradient boosting trees (GBDT) and 

neural network (NN) ensemble model 

 

 

 

 

 

Table.1. Die Bond (DB) process parameter 

Model Setting Selection 

Objective variable defect rate 

Explanatory variable 

Product/equipment data :43 

(Numeric data: 31 / Character 

data: 12) 

Prediction type Numerical prediction 

Number of learning 

data 

769 

Number of validation 

data 

92 

 

Table.2. Wire Bond (WB) process parameter 

Model Setting Selection 

Objective variable defect rate 

Explanatory variable 

Product/equipment data :43 

(Numeric data: 31 / Character 

data: 12) 

Prediction type Numerical prediction 

Number of learning 

data 

866 

Number of validation 

data 

91 

 

Fig4. Result of Die Bond (DB) and Wire Bond (WB) predictions 

 

Fig.5. Accuracy comparison of existing and proposed models 

 


